A NEW BLOOD-FLUKE, CARDICOLA FORSTERI, (DIGENEA: SANGUINICOLIDAE) OF SOUTHERN BLUE-FIN TUNA (THUNNUS MACCOYII) IN AQUACULTURE

by Tiomas H. Cribb". Maktis Daintrif \& Barry Minday!

Abstract

Summary 117.120, 30 Veweluter, ? 10%.

Introdnction

 been used lor aquacollure in whthern Alsatian since byy? The indastry is hased on the eapture of jutrenile fish and their subsequent fattening over a perios of $6-9$ monthas. The mana have been sulyeet to remarkahly lew diseakex so liar. Here we report a new
 pallongenceis will be described elsewhere.

Materials and Methods

Ticmatades were collected lrom the hearts of fieshly-killed lish hosk and lixed by pipeting them mto ncen horling phowphate bulfered saline lollowed by inmediate preservation in 10% nemtral hatiered fomatho. Whole-mentis were stalled wila Mayer's haemantoxylin, cleared with lowhyl sallicylale and mosulted in Cimada halsam. Specimens lor sectioning were eandedded in parallinin wald, stained with hamanoxylin and cosin and monnted in DF:PIX. The following abbreviations are used: AllC, "The Australian Ilelminhological Collection al the Sumbla Australian Muscoum, Adelaide: QM. Quecoslimel Maseum, Brishane.

[^0]
Systematics

Family Sunguinicolidac von Grall. 1907
Cardicula Shorr, 1953
Cardicola forsteri spe now.
(HIG, 1)
Tyue han: Scombridae - Thmmus mencotii (Cistlenatu. 1872).

Tree locality: Olf Rablgit Istind, South Australlid. $34^{\prime 3} 36^{\prime}$ S, $135^{\circ} 59^{\prime} E$

Other loculimes. Limeth Island. South Australiar. 34* $35^{\prime} \mathrm{S}, 135^{\prime \prime} 57^{\circ} \mathrm{E}$.

Sile: heirt.
Molferial extmined; 15 adules inclosling 3 sets of histological sections from Rabhil |s... II lirmon Inmb Is.

Depowilion ey sperimoms: Hololype and 9 parallyper (including 3 selo of sections) AIIC 28331 - 24.311: 5 paratypes QM G $218017-21$.

Do wroiption

(Measturencots in pun of 10 griat ad alls omeans in parmbesis)

Body lamecolace highly compressed downventally; alnow lat ventrally and convex dorsally. 2512 3688 (3228) x $008-428$ (759). Tegumental
 1 :1.e. d!. Nerve commissure thersill to dexophagus allal just posterion to interion end wi bady: main nerve hundes highly prommen in unterion hall of howly

Moulh ineonspicuous, opening veniro-subtermimally. (hesuphagus highly museutar. straght, 816-1196 (10)4) long. 29.1-3.4 (31.5)/ body !engh. Creca H -shaped, simuous; extending anterioly to $672-928$ (833) from anterior end of body; prosterior cateca usually of distmaly urieven Jength. exteading to S60-912 1777) from pasterion end of body. Testis ustally indistinct and difficult to discem, intrit-atod
 behind nervous commisaure anterionly: penetrated hy dorso-ventrally orientated mosele bitases thenughout Vas deferens broth prominent, ofgematiog midventalty to testls, ramning sinuonsly pistonotly, dorsal to ovary and veobal to pherus before enteriog seminal vesicle. Cirus-sac absemt. Somimal vesicle clamgate, evenly curved, E16-238 (174) x $26-64(45)$. Make genital pore sinisten-dorsel, ckose a) latemal margin of body. Orary megutarly Infod, peneltaded by dorso-ventrally orientated muscle fibres throughout. 138-321 (237) $\times 263-62$ (376). Oviduce originating pesteriarly and passing posteriorly inmediadely to expand into ovidteal thamber of varsable sise conlaining erber oncyles hand perhapa sygotes) or sperm: if filled with sperm. Fhastlet may become relatively enommus - up to $357 \times 11 \mathrm{~h}$. Buct emerging from aviducal chamber formed hy vicelline duct thell thome aterombedatly onil Ionming satype survounded by prominent Mohtis' gand cells. Vielline Ioblieles are dilluse and throughan body fom level of atherior margin of ovaty (oometmics fateral to ovary an weli), dorsal and ventral in leslis, and as Cat anteriorly as nervas commissure- Vitellone duct passes ventral to testis and evary U. Unus Tilled with uggs, windite siquously to ovary and then posterionly w- Eemale gemilial pore, drecily amberior to and well separated from make pore. Enes very thin-walled and comprested aganst cikl nther. $19-27(23) \times 11-16$ (14) Exeretory system not obsurved.

Fitvembagy

Whe species is named for Mr Rom Forster South Ausalian tores farmer in reesgntion of lis contributson to the development of the enfightened Hathatenkent of cuptive tona.

Discussion

The new speries shows chose alfinity with the genus Cardioula Shont. 1953 and is here mentilied as a now specker in that genus Cardicoter is dishinguistroble from wher aemera of manime Sangumbotidac by the combination of an H-staped eat. a smgle largely inter-caecar lestis. lack of it cirfursac, perstovarian utertis and separate submarginal yentas pures (Herbetl et at. 199+). The presen species agres will all these charactersexecpi
that the lesis is buth inter-and extra-catecal, although one orthet species of Carticola. C. nugitis Yamoguti. 1970, also thas a purtly extra-comeal essis. Only species of Deomativis Linton. 1910 and Pearsondlum Oyerstred \& Kedie, Th999 also bave exta-caecal testes. Species of Deoutacylar Linuon. 1916 have a tessis contrising "Iningindinally clongated wings" (Yamuguti 1970$)$ which extend laterat to the eacea in a form entucly diflerent from that seen in the present species. The distribution of the vilellarium the the sole species of Pearsonellam. P. corvonum Overstrect o Kevie 1989, is comparable to that of the preseol spectes, boing both aterion to the catesil bituration and bateral to the posterter bactat, but that genus is distinut from the present species in possessing a cirrus-sac (Onerstree se koie 1989).
 Short, 1453 trom two spocics of Cpmorrom (Scibendac) Subsequenty, nine further species have been deseribed ur enmbined with this genus (Smith. 1997a, (b) namely (C ahi Vamaguti. 1970, C. cardicala (Manter. 1447) Shoct, 1953, C. chaclodentix Yamaguin, 1970. C. cartimitacis Manter, 1954. C. gramdis Lebedev \& Mamaev. 1908 (not mentioned by Smith, 1997a.b), C mugilis Vamaghi 1970. C. whitteni Manter. 1454, C. chigntione Lehodev a Manaet, 1968 and C. brositiensis Kyoll \& Abato. 1992. Two of the species. 5 . ani ind C. comporman have been reported fom tura Damly Scombndae satbiamily Thommacs.

The preseat sectes is inmediately distinguisfed from atl these species by tive more extensive distribution of the testis which is both anterior to the caccal bifurestion and well batosl to the poscerionly direded casea. In this sudy, however, we found the disiribulinn of the lespo execethagly diffecult la intepret and, althongh we lind if eonvinting as a species-lovel pharacter. We banelude that it is mot in ideal eharacter lof recognition of species in this gemus. Fortunately seveal other characters also serve to distimgush this species, The length of the oesophagus, vecupying 29-33/7 of the body lemph serves to distimgush it trum C ablion whish is is very stuent (approx. 188f) and spocies to which it is very

 and the short divergent unteriorly directed ciecta of C,
 whitioni are distinst from the relatrely long pasterion eacea and the paralles anteribery directed fateca of ithe present species. The present trecies generally resembles C. craciducis but bilis it retanvely fargen and inegularly lobed mathet than somenth owary and his relatively shofter anteriorly directed got sadea. Fimally. Ci gramis, foom a mullo (Makaira sp, is a mush latger worm (4.7-7.0 mon lone compared puth 2,5-3,7 mm lor the preven species). Its general
organisation is similat to that of the present species except that the testis is described as a single mass immedtately behind the caecal bilureation.

Overstreet \& Køie (1989), Herbert et al. (1994) and other authors have frequently referred os the presence ol numerous dorso-ventrally orientated "ducts" or "structures" in sanguinicolids. These olten pass through the gonads. Such structures are abundant in Cardionla forsteri and are here interpreted, as suggested in Herbert el al. (1994), as
muscle fibres. This interpretation ippears reasonahle in terms of the appearance of these refringent struetures and in terms of function in trematodes where the requirement for flattening against the walls of blood vensels is clearly of great importance.

Acknowledgments

We thank D. Scott and T. Wright lor assistance with the preparation of the specimens.

References

Hi:rblert, B. W., Shalahrom-Harrtson, F. M. \& Ovחrstrait. R. M. (1994) Description of a new bloodtluke, Cruoricola lates 11. g., n. sp. (Digenea: Sanguinicolidate), from sea-bas, Lates culcurifer (Bloch, 1790) (Centropomidac). Syst. Parasit. 29, 51-60).

Ovisctrlit: R. M. \& Kole, M. (1989) Pearsone/lum corvemum. gen et sp . nov. (Digenea: Sanguinicolidae), in sermand fishes from the Capricornia section of the Great Barrier Reel. Anst. J. Zool. 37, 71-79.
Surner, R. B. (1953) A new blood fluke, Cardicola larmein g., in. sp., (Aporocotylidae) from marime fishes. ./ Parasitol. 39.3(14-309.

Smith, J. W. (1997a) The blood חlukes (Digenca: Sanguinicolidae and Spirorchidare) of cold-thlooded vertebrates: Part 1. A review of the literature published since 1971 , and bibliography. Hetminth. Ahs. 66. 255$29+$.
Sanguin (1997b) The blood hukes (Digeneas ancoldae and sprorchidate of cold-blooded vertebrates: Palt 2. Appendix 1: Comprehensive parastehose list: Appendix II: Comprehensive host-parasile jist. Helminth. Abs 66, 329
Yamacotti. S. (1970) "Digenetic trematoden of Hawaiian lishes:" (Keigaku Publishing, Tokyo).

[^0]: Genconstand Brishance (0)d dil7?

